[핵산][DNA][디옥시리보 핵산]핵산(DNA, 디옥시리보 핵산)의 구조, 이중나선, 핵산(DNA, 디옥시리보 핵산)의 재조합기술, 핵산(DNA, 디옥시리보 핵산)의 재생, 핵산(DNA, 디옥시리보 핵산)과 유전공학 분석

  • 등록일 / 수정일
  • 페이지 / 형식
  • 자료평가
  • 구매가격
  • 2013.08.01 / 2019.12.24
  • 10페이지 / fileicon hwp (아래아한글2002)
  • 평가한 분이 없습니다. (구매금액의 3%지급)
  • 5,000원
다운로드장바구니
Naver Naver로그인 Kakao Kakao로그인
최대 20페이지까지 미리보기 서비스를 제공합니다.
자료평가하면 구매금액의 3%지급!
이전큰이미지 다음큰이미지
목차
Ⅰ. 서론

Ⅱ. 핵산(DNA, 디옥시리보 핵산)의 구조
1. DNA에 대한 관심
2. 이중나선 구조의 증거
1) 로절린드 프랭클린의 B형 DNA의 X선 사진
2) 에르빈 샤르가프(Erwin Chargaff)의 관찰결과
3. DNA나선 구조의 정립

Ⅲ. 핵산(DNA, 디옥시리보 핵산)의 이중나선
1. 염기쌍 형성과 DNA의 이중나선
2. 두 DNA 가닥의 역평행배열
3. 생물의 종류에 따른 DNA의 염기조성
4. DNA 나선의 형태

Ⅳ. 핵산(DNA, 디옥시리보 핵산)의 재조합기술
1. 제한효소
2. DNA 연결효소
3. DNA 클로닝
4. DNA 문고(DNA library)
5. DNA 문고로부터 유전자 선별
6. 중합효소 사슬반응(polymerase chain reaction, PCR)

Ⅴ. 핵산(DNA, 디옥시리보 핵산)의 재생
1. 재생의 필요조건
2. 재생메카니즘

Ⅵ. 핵산(DNA, 디옥시리보 핵산)과 유전공학
1. 단백질 공장으로서의 박테리아
2. 진핵생물의 유전공학

Ⅶ. 결론

참고문헌
본문내용
Ⅰ. 서론

생화학자들은 유전정보를 저장하기에는 DNA 보다는 단백질이 더 적합하다고 생각하였다. 왜냐하면 단백질은 20가지의 다른 아미노산들이 아주 다양한 비율로 구성이 된 반면, DNA에는 단지 네 종류의 뉴클레오티드 밖에는 발견되지 않았기 때문이다. 더구나 DNA에서 발견되는 A의 양은 항상 T의 양과 같다는 사실은 더욱 실망스러운 것이었다. 그뿐만 아니라 C의 양은 G의 양과 동일하였다. 이런 현상은 단순한 반복적인 동일성이 DNA에 있음을 암시하였다. 따라서 이런 물질 속에 다양한 정보를 보관한다는 것은 격에 맞지 않는 것으로 보였다. 그렇다고 DNA가 유전정보를 코드 할 수 없게 만든 것은 아니다. 왜냐하면 컴퓨터도 단순한 두 가지 단위인 1과 0(또는 "on" 과 "off")으로서 모든 정보를 보관하기 때문이다.
어떻게 해서 DNA가 유전자로서의 기능저장, 복제, 그리고 정보의 표현 등의 기능을 나타낼 수 있는지를 알기 위해서는 DNA3차 구조를 알아야만 했다. 이 연구는 1953년 영국의 두 과학자인 James Watson과 Francis Crick에 의해 성공적으로 수행되었다. 이들은 뉴클레오티드의 급속 모텔을 이용하여 자가 복제 능력을 포함한 DNA에 과한 모든 정보를 설명할 수 있는 분자 모델을 구축하는 성공하였다. 이 발견에 의해 그들은 1962년도 노벨상을 수상하게 되었다.
Watson-Crick모델에서 DNA분자는 2개의 폴리뉴클레오티드 사슬 또는 "가닥"으로 구성되어 있다. 각 사슬의 골격은 당과 인산기가 번갈아 있는 구조로 형성되어 있다.
참고문헌
미야나가 요시아키(2003), 핵산 암을 이기다, 관음출판사
마츠나가 마사지 저, 김병숙 역(1998), DNA 핵산건강법, 살림
일본 유전자영양학연구소(2007), 핵산으로 몸 속에서 젊음을 찾는다, 교학사
엄숭호 외 2명(2010), 나노메디슨 구조 핵산 공학, 한국화학공학회
전주홍(2005), 핵산진단기술의 연구동향, 한국보건산업진흥원
JeanAmos Wilson(2010), 다중 핵산 분석법의 검정 및 검증, 아이비
자료평가
    아직 평가한 내용이 없습니다.
회원 추천자료
  • [화공] CHEMICAL ENGINEERING
  • 이중막에 의하여 싸여져 세포질과 분리되어 있는 염색체를 가지고있다. 염색체는 길고 가느다란 형체로 유전정보를 가지고 있다. 리보솜은 불규칙한 망상구조로 서로 연결되어 있는 막인 소포체의 표면을 따라 많은 수가 존재한다. 미토콘드리아는 산소를 이용하여 에너지를 만드는 과정인 전자전달효소를 지니고 있으며, 액포와 리보좀은 세포 내 다양한 화학반응이 일어나는 기관들이다. 미생물 명명법 :미생물을 2개의 이름으

  • 인간복제의 문제점 및 향후 해결해야 할 과제
  • 유전자 재조합연구이다. 이러한 연구가 가져올 수 있는 의학적․환경적․생물학적으로의 의도하지 않은 결과에 대해 누구도 확실히 알 수 없었다. 예컨대 유전자 재 조합으로 나타날 잡종 바이러스가 새로운 병을 유발할지 누구도 알 수 없는 것이었다. 이렇게 70년대 말 생물재해의 논란이 지난 후 유전공학의 번성기를 맞이하게 되었다. 대부분의 분자생물학자들이 산업적 활동에 진출하게 되었다. 기업가로, 기업 자문역으로, 혹은 기술자로 유

  • [과학사회학]현대 생물학의 이해
  • 유전과 진화-진화론-유전6. 생태와 환경: 생태학-생물의 상호의존-인구/식량/농업 문제-의료 문제Ⅲ.결론-생물학의 미래Ⅰ. 서 론「과학의 역사」로 번역된 J.D. 버날의 「Science in History」는 그 제목이 말해주듯이 역사 속에서 과학의 흐름을 읽기 위한 시도이다. 특히 책의 전체를 통해서 강조하고 있듯이, 저자는 과학과 역사, 과학과 사회 사이의 상호작용에 초점을 맞추고 과학의 역사를 분석하고 있다. 생물학에 대한 버날의 관점 역시 전체의

  • [과학사] 유전학이 현대 사회에서 막강한 권력을 갖는 이유
  • 과정에 대한 대수학적인 기초 마련하였다.1934년 루리아(S.Luria), 델브릭(M.Delbrück): 유전연구의 모델로서 세균 제시하였다.유전학의 발달 역사 - 1944~ 현재DNA 가 유전물질이라는 주장에서 시작하여 유전자 재조합 기술의 발달로 유전학이 꽃피는 시기1944년 에이버리(O.Avery): 디옥시리보핵산(DNA)이 유전물질임을 실험으로 입증1953년 왓슨(James Watson), 크릭(Francis Crick): DNA 이중나선 구조 밝힘1968~1973년 아르버(W.Arber), 스미스(H.Smith), 네이선스(D.Nathans): 제

  • 생활속의 유전학
  • 이중나선의 DNA 가닥이 분리되며, 온도가 천천히 낮아지면 원래의 2중나선 구조는 회복되지만 때때로 DNA 가닥 간의 재조합이 일어나기도 한다.- DNA의 구조2개의 폴리뉴클레오티드 가닥이 퓨린과 피리미딘의 염기결합으로 2중나선을 이룬다. 구아닌염기(퓨린)는 시토신염기(피리미딘)와 3중 수소결합을 하며, 아데닌염기(퓨린)는 티민염기(피리미딘)와 2중 수소결합을 한다.당(디옥시리보오스)은 인산 이에스테르 결합으로 뉴클레오티드를 연결하여 각 D

오늘 본 자료 더보기
  • 오늘 본 자료가 없습니다.
  • 저작권 관련 사항 정보 및 게시물 내용의 진실성에 대하여 레포트샵은 보증하지 아니하며, 해당 정보 및 게시물의 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 위 정보 및 게시물 내용의 불법적 이용, 무단 전재·배포는 금지됩니다. 저작권침해, 명예훼손 등 분쟁요소 발견시 고객센터에 신고해 주시기 바랍니다.
    사업자등록번호 220-06-55095 대표.신현웅 주소.서울시 서초구 방배로10길 18, 402호 대표전화.02-539-9392
    개인정보책임자.박정아 통신판매업신고번호 제2017-서울서초-1806호 이메일 help@reportshop.co.kr
    copyright (c) 2003 reoprtshop. steel All reserved.