[반응공학] 암모니아 합성(Ammonia synthesis)영문

  • 등록일 / 수정일
  • 페이지 / 형식
  • 자료평가
  • 구매가격
  • 2009.08.27 / 2019.12.24
  • 15페이지 / fileicon hwp (아래아한글2002)
  • 평가한 분이 없습니다. (구매금액의 3%지급)
  • 1,400원
다운로드장바구니
Naver Naver로그인 Kakao Kakao로그인
최대 20페이지까지 미리보기 서비스를 제공합니다.
자료평가하면 구매금액의 3%지급!
이전큰이미지 다음큰이미지
목차
1. Introduction

2. A Brief of History of Ammonia Synthesis

3. The Societal Need and Economic Impacts

4. A Brief Description of
Ammonia synthesis process

5. Kinetics, Performance Equations,
the Contacting Patterns related to the process.

6. Reference



본문내용

1. Introduction

Ammonia (NH3) is one of the most familiar compounds of nitrogen and hydrogen as well as one of the world's most valuable industrial and agricultural chemicals. Ammonia is used throughout the industrial world as a valuable fertilizer.
Ammonia and its compounds, primarily ammonium nitrate and other ammonium salts, replenish nitrogen in depleted soils. This greatly increases yields of agricultural crops, especially those that cannot obtain nitrogen from the atmosphere. The ammonia is converted to nitric acid, an essential ingredient in explosives, via the Ostwald-Bauer process invented by German chemist Wilhelm Ostwald (1853-1932) in 1901. During World War I, synthetic ammonia was used to manufacture ammunition after Germany's nitrate supplies had been cut off.
Commercial ammonia synthesis takes place in large steel reactors that are designed to withstand very high pressures (up to one thousand atmospheres) and high temperatures (about 700°C or 1300°F). The reactors also resist attack by hydrogen gases which can corrode many metals, especially at high temperature and pressure. The catalyst in commercial ammonia synthesis is usually an iron oxide mixed with a small amount of additional "promoter" material. When the process begins, the hydrogen gas converts the catalyst to pure iron. Gradually, as the iron catalyst is poisoned by carbon and sulfur compounds, it becomes less effective and must be replaced. Nitrogen gas for the synthesis process comes from the atmosphere, while most of the hydrogen needed is extracted from natural gas sources. Once ammonia gas has been formed, it is liquefied by cooling it with water. Nitrogen and hydrogen that have not yet been converted to ammonia are recycled through the system. In addition to Haber-Bosch synthesis, other industrial sources of ammonia also exist; it is created as a by-product, for example, during the production of coal and coke-oven gas.
In the early 1990's the M.W. Kellogg Co. developed a new reduced energy process for manufacturing ammonia. This technology was successfully implemented by Pacific Ammonia Inc at its Kitimat, British Columbia plant in 1994. This new technique can increase ammonia production by 40% by using two innovative processes. The first innovation, known as the Kellogg Advanced Ammonia Process, involves a ruthenium-based catalyst instead of a traditional iron catalyst. The second innovation, the Kellogg Reforming Exchanger System, uses a new open-tube design in the reforming exchanger.


2. A Brief of History of Ammonia Synthesis

In ancient times, ammonia was derived from organic material such as manure and urine. During the Middle Ages, alchemists produced a weak solution of ammonia in water by distilling the horns and hoofs of oxen. They called this ammonia solution "spirits of hartshorn." Later, more substantial amounts of ammonia were recovered from the vapors of natural steam vents in Italy, and large quantities of ammonia were produced from Chile saltpeter (sodium nitrate, or NaNO3), which is mined in South American deserts. Around the turn of the twentieth century, Sir William Crookes predicted that the world would soon run short of Chile saltpeter. Scientists feared that without nitrogen-based fertilizers to increase crop yields, the growing world population would starve. Thus began the search for an alternative source of ammonia. Although a practically inexhaustible source of nitrogen exists in the atmosphere, which consists of about 80 percent nitrogen, no one knew how to convert the element into ammonia on a large scale. In Germany, Fritz Haber began investigating the possibility of combining nitrogen from the atmosphere with hydrogen to form ammonia. In principle the chemistry of ammonia synthesis was simple but the execution was difficult because high temperatures and very high pressures were needed to produce enough quantities of ammonia to make the process economical. Habersucceeded in developing an ammonia synthesis process that worked in the laboratory in 1909. Initially, Haber used osmium or uranium as a catalyst to speed up
참고문헌

① Jayant. M. Modak, Harber Process for Ammonia Synthesis, Resonance, 2002
② A. Ozaki and Hugh Taylor, Kinetics and mechanism of Ammonia Synthesis, Proceeding of the Royal Society of London, 1960
③ J. Morud, "The dynamics of Chemical Reactors Whit Heat Integration", Ph.D thesis, 1995.
④ S. S. Elnashaie, M. E. Abashar And A. S. Al. Ubaid, "Simulation and Optimization of an Industrial Ammonia Reactor", Ind. Eng, chem.. Res, Vol. 27,pp. 2015, 1988.
⑤ D.C. Dyson and J.M. Sicon. "A Kinetic Expression With Diffusion Correction for Ammonia
⑥ Synthesis on Industrial Catalyst", Ind. Eng. Chem. Fundamental, Vol. 7, No. 4, pp. 605, 1986.
⑦ P.P. Singh and N. Saraf "Simulation of Ammonia Synthesis Reactor", Ind. Eng. Chem. Process Des. Dev, Vol. 18, No.3, pp. 304, 1979.
자료평가
    아직 평가한 내용이 없습니다.
회원 추천자료
  • [A+] 중합공학실험2 Synthesis of Urea formaldehyde Resin 레포트
  • REPORTA+Synthesis of Urea-formaldehyde Resin실험 목적1) Urea-formaldehyde 수지의 합성에 대한 이해 및 합성법 습득2) 부가축합 반응에 대한 이해실험 원리1) Urea-formaldehyde Resin (UF)Urea와 formaldehyde의 pH의 조절과 축합반응에 의해 생성된 열경화성 수지로 가격이 저렴하고, 반응시간이 빠르며, 수용성이 높고, 내마모성과 미생물에 대한 저항성 때문에 널리 활용된다. 용도는 화장품의 용기 캡 및 식기 부품의 성형품, 합판과 목재 접착재, 알코올 첨가한 도료용, 산성

  • [졸업][환경공학] 반응조건에 따른 도시고형폐기물 가스화 특성
  • 반응조건유입유량시료량반응시간체류시간운반기체 유량2. 실험 data1) 생성물 발생량전(g) 후(g) 전후차(g)char 0liquid 0 0 0실리카겔 0임핀저1 02 03 04 05 06 0튜브1 02 03 04 05 06 02) 발생 gas량H2 CO CH4 CO2 N21234567891011123) 온도min 1(상) 2(중) 3(하) 4(자켓)123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051유량02468101214161820222426283032343638404244464850525456586062646

  • 초임계 유체 레포트
  • 합성법 나노입자의 제조법은 기상법, 액상법과 고상법으로 나눌 수 있다. 액상법 중에서 가장 널리 이용되고 있는 수열법 (Hydrothermal Synthesis)은 물을 매체 혹은 반응물로 사용하여 가열 합성하는 방법인데, 물이 초임계수인 경우에는 초임계 수열법(Supercritical Hydrothermal Synthesis; SHS)으로 분류한다. 아임계 혹은 초임계수는 금속염 전구체를 분해(가수분해)하고, 다시 탈수시키는 성질이 있으므로 매우 적합한 반 응 매체이다. 물은 Fig. 1에 나타낸 바와 같

  • 자연냉매 레포트
  • 암모니아가 금속염화물에 흡착되는 과정은 단순변화계로서 고체 내 기체의 평형 증기압은 단지 온도에만 의존하고 흡착되는 기체의 양에는 무관하여 항상 일정한 증기압을 유지할 수있으며, 일정 온도와 압력 조건에서 완저한 흠/탈착이 가능하다. 금속 염화물은 암모니아, 또는 물과 가역적으로 반응하여 결합하고 일정 온도와 압력하에 전부 흡흡/탈착하여 많은 양을(특히 암모니아의 경우)받거나 내놓을 수 있기 때문에 이런 극성기체의 증발 잠열

  • (환경미생물학 B형) ‘생물학적 질소 제거’에 대해서 서론, 본론 및 결론으로 나누어 논하시오
  • 암모니아의 경우 물고기와 같은 수생 생물에 독성을 유발하고 0.2㎎/l 이상의 농도는 치명적이다. 또한 암모니아성 질소는 수계의 용존산소를 고갈시키고 부영양화를 유발시키고, 질산성 질소는 아이들에게 나타나는 Blue baby병의 원인이 된다. 질소는 주로 미생물의 증식 및 합성에 필요 한 물질대사에 의해 소비되거나, 미생물의 산화 및 환원반응에 의해대기 중으로 탈기되면서 제거된다. 하지만 미생물의 증식에 의해 제거되는 양 은폐수내 존재하는

사업자등록번호 220-06-55095 대표.신현웅 주소.서울시 서초구 방배로10길 18, 402호 대표전화.02-539-9392
개인정보책임자.박정아 통신판매업신고번호 제2017-서울서초-1806호 이메일 help@reportshop.co.kr
copyright (c) 2003 reoprtshop. steel All reserved.