레포트샵

[물리화학] 수학 및 물리의 복습

레포트 > 자연계열 > 자료상세보기 (자료번호:137651)

구매가격
500원 할인쿠폰450원
등록/수정
2006.09.09 / 2006.09.10
파일형식
fileiconhwp(아래아한글2002)
페이지수
5페이지
자료평가
평가한 분이 없습니다.
  • 다운로드
  • 장바구니 담기

이전

  • 1물리화학  수학 및 물리의 복습1
  • 2물리화학  수학 및 물리의 복습2
  • 3물리화학  수학 및 물리의 복습3
  • 4물리화학  수학 및 물리의 복습4
  • 5물리화학  수학 및 물리의 복습5

다음

닫기

이전큰이미지 다음큰이미지
  • 최대 100페이지까지 확대보기 서비스를 제공합니다.
신규가입 200원 적립! + 10% 할인쿠폰 3장지급! banner구매자료를 평가하면 현금처럼 3%지급!

하고 싶은 말

물리화학에 들어가기에 앞서 필요한 수학적 지식과 물리에 대하여 서술한 레포트 입니다.
요점만 주로 적어 이해 하기 쉽게 적었으므로 이해하는데 많은 도움이 될꺼라 생각 됩니다.
고등학교 때의 수학과 물리이므로 대학레포트 작성시에 많은 도움이 될듯합니다.

목차

수학 [Mathematics]

대수 [logarithm]
① 상용대수 (common) logarithm)
② 자연대수(natural logarithm)
③ 지수와 상용대수와의 관계

간단한 방정식 [Simple equations]
① 1차 방정식(선형방정식)(linear equation)
② 2차 방정식(quadratic equation)
평균값 [mean value]
각도와 라디안 [angles and radian]
☉ 각도와 radian과의 관계

면적과 부피 [areas and volumes]
1. 삼각형(Triangle)
2. 원(Circle)
3. 구(sphere)
4. 원통형(cylinder)
5. 원뿔(cone)

연산자 [operator]

미분과 적분 [differential and integral calculus]

몇 가지 유용한 적분(some useful integrals)

물리 [physics]
역학(mechanics)
1. 속도(velocity, v)
2. 가속도(acceleration, a)
3. 선운동량(linear momentum : p)
4. 각속도와 각 운동량(angular velocity and angular momentum)

mole(mol)의 개념

Avogadro's number 와 mole

화학 양론적 당량(stoichiometic equivalence)

원소(element)와 화합물의 mol측정


본문내용

수학 및 물리의 복습

수학 [Mathematics]
지수함수와 멱수 (Exponents and Powers)
- 많은 수들은 10 의 멱수로 표현한다.
*1 = 10 의 0승 *0.1= 10 의 -1승 *0.00023= 2.3* 10 의 -4승 *100= 10 의 2승
*100,000= 10 의 5승 *3.1623= 10 의 0.5승
- 일반적으로, a 의 n 승이라 적을 때 a는 밑수(base), n은 지수(exponent)
-a의 0승은 a = 0일 때를 제외하고, 모든 a값에 대해 1이다.
-0의 n승은 = 0 (n의 모든 값), 1의 n승 = 1이다.
대수 [logarithm]
- 지수함수의 자연스런 확장
x = a의 y승 y = log a의 x승
ex) 81 = 3의 4승 4 = log 3 의 81승
- 밑수가 10인 대수
① 상용대수 (common) logarithm) : 밑수가 10인 대수. 관례로써 a의 상용대수인 log10a 대신 loga 로 사용한다.
② 자연대수(natural logarithm) : 밑수가 e를 가지는 대수.
e = 1 + 1/1! + 1/2! + 1/3! + ... = 2.7182818 = 2.7183
물리화학에서, 지수 함수 y = e의 x승 역할이 중요
- 양변에 자연대수를 취하면 ln y = x ln e = x 여기서 “ln" 은 log e 로 나타냄.
③ 지수와 상용대수와의 관계
y = e의 x승에서, 양변에 상용대수를 취하면,
log y = x log e = ln y log e
여기서 x = ln y = 0.4343 ln y 또는 2.303 log y = ln y
* 자연대수에서 상용대수로 변환 시에는 2.303을 곱하여야 한다.
간단한 방정식 [Simple equations]
① 1차 방정식(선형방정식)(linear equation)
y = mx + b
y대 x의 plot는 기울기(slope)가 m이고, 절편(intercept)는 y축 상에서 (x = 0) b인 직선임
② 2차 방정식(quadratic equation)
y = ax의 제곱 +bx +c, x = -b+-루트 (b제곱 - 4ac) / 2a
a,b,c는 상수. a는 0이 아니다. y대 x의 plot는 포물선(parabola)
y = 3x의 제곱 - 5x + 2, x = 5 +-루트(-5의 제곱 - 4*3*2) / 2*3 = 1 or 0.67
평균값 [mean value]
- 실험에서 여러 번 측정 경우, 앞에서 읽은 값과 다른 갑을 간혹 얻는다. 이 경우 이들 두값을 평균하여 나타낸다. 가장 일반적인 평균값은 산술평균(arithmetical mean), 측정값 a와 b일 때, 산술 평균은 (a +b) / 2, 측정 값이 무질서하게 변하지 않는다면, 기하평균(geometric mean)을 이용. 두수 a와 b의 기하평균은 루트(ab)이다.

태그 물리, 연산자, 면적과 부피, 미분과 적분, 수학

도움말

이 문서는 한글워디안, 한글2002 이상의 버전에서만 확인하실 수 있습니다.

구매에 참고하시기 바랍니다.

자료평가

아직 평가한 내용이 없습니다.

오늘 본 자료

  • 오늘 본 자료가 없습니다.
  • img

    저작권 관련 사항 정보 및 게시물 내용의 진실성에 대하여 레포트샵은 보증하지 아니하 며, 해당 정보 및 게시물의 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 위 정보 및 게시물 내용의 불법적 이용, 무단 전재·배포는 금지됩니다. 저작권침해, 명예훼손 등 분쟁요소 발견시 고객 센터에 신고해 주시기 바랍니다.